sgd_hw/p4_model.py
2021-02-25 21:34:10 +09:00

99 lines
3.0 KiB
Python

from layer import *
import numpy as np
import pickle
import os
class CheckPoint:
def __init__(self,param,accuracy,loss,iteration):
super().__init__()
self.param = param
self.accuracy = accuracy
self.loss = loss
self.iteration = iteration
class Model:
def __init__(self, layerDim:[int]):
super().__init__()
gen:np.random.Generator = np.random.default_rng()
self.layerDim = layerDim
self.param = []
self.checkpoints = []
self.iteration = 0
#...
front = 784
for sd in layerDim:
back = sd
weight = Variable(gen.normal(0,1,size=(front,back)))
bias = Variable(gen.normal(0,1,size=(back)))
self.param.append((weight,bias))
front = back
def caculate(self,input_x,y):
input_var = Variable(input_x)
Z = input_var
for i,(w,b) in enumerate(self.param):
U = Z @ w + b
if i < len(self.param) - 1:
Z = relu(U)
else:
Z = U
J = SoftmaxWithNegativeLogLikelihood(Z,y)
return J
def train_one_iterate(self,input_x,y,eta):
#forward pass
J = self.caculate(input_x,y)
#backpropagation
J.backprop(np.ones(()))
for i,(w,b) in enumerate(self.param):
w = Variable(w.numpy() - (w.grad) * eta)
b = Variable(b.numpy() - (b.grad) * eta)
self.param[i] = (w,b)
self.iteration += 1
return J
def get_loss_and_confusion(self,input_x,y):
J = self.caculate(input_x,y)
s = J.softmax_numpy()
s = np.round(s)
confusion = (np.transpose(y)@s)
return J.numpy(), confusion
def set_checkpoint(self,dev_x,dev_y):
J = self.caculate(dev_x,dev_y)
loss = np.average(J.numpy())
print(f"check point #{len(self.checkpoints)}")
print(self.iteration,'iteration : avg loss : ',loss)
confusion = get_confusion(J)
accuracy = get_accuracy_from_confusion(confusion)
print('accuracy : {:.2f}%'.format(accuracy * 100))
self.checkpoints.append(CheckPoint(
self.param,
accuracy*100,
loss,
self.iteration
))
def get_confusion(J:SoftmaxWithNegativeLogLikelihood):
s = J.softmax_numpy()
s = np.eye(10)[np.argmax(s,axis=len(s.shape)-1)]
confusion = (np.transpose(J.y)@s)
return confusion
def get_accuracy_from_confusion(confusion):
return np.trace(confusion).sum() / np.sum(confusion)
def model_filename(layerDim:[int]):
return f"model{layerDim}.pickle"
def save_model(model:Model):
with open(model_filename(model.layerDim),"wb") as model_file:
pickle.dump(model,model_file)
def load_or_create_model(layerDim:list):
model_name = model_filename(layerDim)
if os.path.exists(model_name):
with open(model_name,"rb") as model_file:
return pickle.load(model_file)
else:
return Model(layerDim)