refact p4
This commit is contained in:
parent
f802d99a0c
commit
5907f9e978
3
.gitignore
vendored
3
.gitignore
vendored
@ -140,4 +140,5 @@ cython_debug/
|
|||||||
|
|
||||||
sgd_hw/
|
sgd_hw/
|
||||||
|
|
||||||
mnist.pickle
|
mnist.pickle
|
||||||
|
*.pickle
|
2
layer.py
2
layer.py
@ -186,7 +186,7 @@ class SoftmaxWithNegativeLogLikelihood(OpTree):
|
|||||||
#row vector
|
#row vector
|
||||||
def __init__(self, i, y):
|
def __init__(self, i, y):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
epsilon = 1e-12
|
epsilon = 1e-15
|
||||||
self.i = i
|
self.i = i
|
||||||
self.s = softmaxHelp(i.numpy())
|
self.s = softmaxHelp(i.numpy())
|
||||||
self.y = y
|
self.y = y
|
||||||
|
41
mnist_load.py
Normal file
41
mnist_load.py
Normal file
@ -0,0 +1,41 @@
|
|||||||
|
import os
|
||||||
|
import pickle
|
||||||
|
import random
|
||||||
|
from sklearn import datasets
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
PICKLE_DATA_FILENAME = "mnist.pickle"
|
||||||
|
|
||||||
|
train_x = None
|
||||||
|
train_y = None
|
||||||
|
dev_x = None
|
||||||
|
dev_y = None
|
||||||
|
test_x = None
|
||||||
|
test_y = None
|
||||||
|
|
||||||
|
def load_mnistdata():
|
||||||
|
global train_x, train_y, dev_x, dev_y, test_x, test_y
|
||||||
|
if not os.path.exists(PICKLE_DATA_FILENAME):
|
||||||
|
X, y = datasets.fetch_openml('mnist_784', return_X_y=True, cache=True, as_frame= False)
|
||||||
|
with open(PICKLE_DATA_FILENAME,"wb") as file:
|
||||||
|
pickle.dump(X,file)
|
||||||
|
pickle.dump(y,file)
|
||||||
|
else:
|
||||||
|
with open(PICKLE_DATA_FILENAME,"rb") as file:
|
||||||
|
X = pickle.load(file)
|
||||||
|
y = pickle.load(file)
|
||||||
|
|
||||||
|
#i = random.randint(0,len(X) - 1)
|
||||||
|
#plt.imshow(X[0].reshape(28,28),cmap='gray',interpolation='none')
|
||||||
|
#plt.show()
|
||||||
|
|
||||||
|
#simple normalize
|
||||||
|
X = X / 255
|
||||||
|
|
||||||
|
y = np.array([int(i) for i in y])
|
||||||
|
Y = np.eye(10)[y]
|
||||||
|
|
||||||
|
train_x,train_y = X[0:3500*17], Y[0:3500*17]
|
||||||
|
dev_x,dev_y = X[3500*17:3500*18], Y[3500*17:3500*18]
|
||||||
|
test_x,test_y = X[3500*18:3500*20], Y[3500*18:3500*20]
|
||||||
|
return ((train_x, train_y),(dev_x,dev_y),(test_x,test_y))
|
131
p4.py
131
p4.py
@ -8,136 +8,23 @@ import matplotlib.pyplot as plt
|
|||||||
import random
|
import random
|
||||||
import itertools
|
import itertools
|
||||||
import math
|
import math
|
||||||
|
import mnist_load
|
||||||
|
from p4_model import *
|
||||||
#matplotlib.use("TkAgg")
|
#matplotlib.use("TkAgg")
|
||||||
|
|
||||||
PICKLE_DATA_FILENAME = "mnist.pickle"
|
train_set, dev_set, test_set = mnist_load.load_mnistdata()
|
||||||
if not os.path.exists(PICKLE_DATA_FILENAME):
|
|
||||||
X, y = datasets.fetch_openml('mnist_784', return_X_y=True, cache=True, as_frame= False)
|
|
||||||
with open(PICKLE_DATA_FILENAME,"wb") as file:
|
|
||||||
pickle.dump(X,file)
|
|
||||||
pickle.dump(y,file)
|
|
||||||
else:
|
|
||||||
with open(PICKLE_DATA_FILENAME,"rb") as file:
|
|
||||||
X = pickle.load(file)
|
|
||||||
y = pickle.load(file)
|
|
||||||
|
|
||||||
i = random.randint(0,len(X) - 1)
|
train_x,train_y = train_set
|
||||||
#plt.imshow(X[0].reshape(28,28),cmap='gray',interpolation='none')
|
dev_x,dev_y = dev_set
|
||||||
#plt.show()
|
test_x,test_y = test_set
|
||||||
|
|
||||||
#simple normalize
|
|
||||||
X = X / 255
|
|
||||||
|
|
||||||
y = np.array([int(i) for i in y])
|
|
||||||
Y = np.eye(10)[y]
|
|
||||||
|
|
||||||
train_x,train_y = X[0:3500*17], Y[0:3500*17]
|
|
||||||
dev_x,dev_y = X[3500*17:3500*18], Y[3500*17:3500*18]
|
|
||||||
test_x,test_y = X[3500*18:3500*20], Y[3500*18:3500*20]
|
|
||||||
|
|
||||||
gen:np.random.Generator = np.random.default_rng()
|
gen:np.random.Generator = np.random.default_rng()
|
||||||
eta = 0.0001
|
eta = 0.00001
|
||||||
|
|
||||||
MiniBatchN = 32
|
MiniBatchN = 32
|
||||||
|
|
||||||
class CheckPoint:
|
model = load_or_create_model([300,10])
|
||||||
def __init__(self,param,accuracy,loss,iteration):
|
|
||||||
super().__init__()
|
|
||||||
self.param = param
|
|
||||||
self.accuracy = accuracy
|
|
||||||
self.loss = loss
|
|
||||||
self.iteration = iteration
|
|
||||||
|
|
||||||
class Model:
|
|
||||||
def __init__(self, layerDim:[int]):
|
|
||||||
super().__init__()
|
|
||||||
gen:np.random.Generator = np.random.default_rng()
|
|
||||||
self.layerDim = layerDim
|
|
||||||
self.param = []
|
|
||||||
self.checkpoints = []
|
|
||||||
self.iteration = 0
|
|
||||||
front = 784
|
|
||||||
for sd in layerDim:
|
|
||||||
back = sd
|
|
||||||
weight = Variable(gen.normal(0,1,size=(front,back)))
|
|
||||||
bias = Variable(gen.normal(0,1,size=(back)))
|
|
||||||
self.param.append((weight,bias))
|
|
||||||
front = back
|
|
||||||
|
|
||||||
def caculate(self,input_x,y):
|
|
||||||
input_var = Variable(input_x)
|
|
||||||
Z = input_var
|
|
||||||
for i,(w,b) in enumerate(self.param):
|
|
||||||
U = Z @ w + b
|
|
||||||
if i < len(self.param) - 1:
|
|
||||||
Z = relu(U)
|
|
||||||
else:
|
|
||||||
Z = U
|
|
||||||
J = SoftmaxWithNegativeLogLikelihood(Z,y)
|
|
||||||
return J
|
|
||||||
def train_one_iterate(self,input_x,y,eta):
|
|
||||||
#forward pass
|
|
||||||
J = self.caculate(input_x,y)
|
|
||||||
#backpropagation
|
|
||||||
J.backprop(np.ones(()))
|
|
||||||
for i,(w,b) in enumerate(self.param):
|
|
||||||
w = Variable(w.numpy() - (w.grad) * eta)
|
|
||||||
b = Variable(b.numpy() - (b.grad) * eta)
|
|
||||||
self.param[i] = (w,b)
|
|
||||||
self.iteration += 1
|
|
||||||
return J
|
|
||||||
|
|
||||||
def get_loss_and_confusion(self,input_x,y):
|
|
||||||
J = self.caculate(input_x,y)
|
|
||||||
s = J.softmax_numpy()
|
|
||||||
s = np.round(s)
|
|
||||||
confusion = (np.transpose(y)@s)
|
|
||||||
return J.numpy(), confusion
|
|
||||||
|
|
||||||
def set_checkpoint(self,dev_x,dev_y):
|
|
||||||
J = self.caculate(dev_x,dev_y)
|
|
||||||
loss = np.average(J.numpy())
|
|
||||||
print(f"check point #{len(self.checkpoints)}")
|
|
||||||
print(self.iteration,'iteration : avg loss : ',loss)
|
|
||||||
|
|
||||||
confusion = get_confusion(J)
|
|
||||||
accuracy = get_accuracy_from_confusion(confusion)
|
|
||||||
print('accuracy : {:.2f}%'.format(accuracy * 100))
|
|
||||||
self.checkpoints.append(CheckPoint(
|
|
||||||
self.param,
|
|
||||||
accuracy*100,
|
|
||||||
loss,
|
|
||||||
self.iteration
|
|
||||||
))
|
|
||||||
|
|
||||||
def get_confusion(J:SoftmaxWithNegativeLogLikelihood):
|
|
||||||
s = J.softmax_numpy()
|
|
||||||
s = np.eye(10)[np.argmax(s,axis=len(s.shape)-1)]
|
|
||||||
confusion = (np.transpose(J.y)@s)
|
|
||||||
return confusion
|
|
||||||
|
|
||||||
def get_accuracy_from_confusion(confusion):
|
|
||||||
return np.trace(confusion).sum() / np.sum(confusion)
|
|
||||||
|
|
||||||
def model_filename(layerDim:[int]):
|
|
||||||
return f"model{layerDim}.pickle"
|
|
||||||
|
|
||||||
def save_model(model:Model):
|
|
||||||
with open(model_filename(model.layerDim),"wb") as model_file:
|
|
||||||
pickle.dump(model,model_file)
|
|
||||||
|
|
||||||
def load_or_create_model(layerDim:list):
|
|
||||||
model_name = model_filename(layerDim)
|
|
||||||
if os.path.exists(model_name):
|
|
||||||
with open(model_name,"rb") as model_file:
|
|
||||||
return pickle.load(model_file)
|
|
||||||
else:
|
|
||||||
return Model(layerDim)
|
|
||||||
model = load_or_create_model([300,300,100,10])
|
|
||||||
|
|
||||||
accuracy_list = []
|
|
||||||
loss_list = []
|
|
||||||
iteration_list = []
|
|
||||||
end_n = math.floor(3500*17 /MiniBatchN)
|
end_n = math.floor(3500*17 /MiniBatchN)
|
||||||
|
|
||||||
for epoch in range(1):
|
for epoch in range(1):
|
||||||
@ -154,7 +41,7 @@ for epoch in range(1):
|
|||||||
if (model.iteration) % 10 == 0:
|
if (model.iteration) % 10 == 0:
|
||||||
print(f"iteration {model.iteration+1}")
|
print(f"iteration {model.iteration+1}")
|
||||||
|
|
||||||
J = model.caculate(test_x,test_y)
|
J = model.caculate(dev_x,dev_y)
|
||||||
loss = np.average(J.numpy())
|
loss = np.average(J.numpy())
|
||||||
print('testset : avg loss : ',loss)
|
print('testset : avg loss : ',loss)
|
||||||
|
|
||||||
|
99
p4_model.py
Normal file
99
p4_model.py
Normal file
@ -0,0 +1,99 @@
|
|||||||
|
from layer import *
|
||||||
|
import numpy as np
|
||||||
|
import pickle
|
||||||
|
import os
|
||||||
|
|
||||||
|
class CheckPoint:
|
||||||
|
def __init__(self,param,accuracy,loss,iteration):
|
||||||
|
super().__init__()
|
||||||
|
self.param = param
|
||||||
|
self.accuracy = accuracy
|
||||||
|
self.loss = loss
|
||||||
|
self.iteration = iteration
|
||||||
|
|
||||||
|
class Model:
|
||||||
|
def __init__(self, layerDim:[int]):
|
||||||
|
super().__init__()
|
||||||
|
gen:np.random.Generator = np.random.default_rng()
|
||||||
|
self.layerDim = layerDim
|
||||||
|
self.param = []
|
||||||
|
self.checkpoints = []
|
||||||
|
self.iteration = 0
|
||||||
|
#...
|
||||||
|
front = 784
|
||||||
|
for sd in layerDim:
|
||||||
|
back = sd
|
||||||
|
weight = Variable(gen.normal(0,1,size=(front,back)))
|
||||||
|
bias = Variable(gen.normal(0,1,size=(back)))
|
||||||
|
self.param.append((weight,bias))
|
||||||
|
front = back
|
||||||
|
|
||||||
|
def caculate(self,input_x,y):
|
||||||
|
input_var = Variable(input_x)
|
||||||
|
Z = input_var
|
||||||
|
for i,(w,b) in enumerate(self.param):
|
||||||
|
U = Z @ w + b
|
||||||
|
if i < len(self.param) - 1:
|
||||||
|
Z = relu(U)
|
||||||
|
else:
|
||||||
|
Z = U
|
||||||
|
J = SoftmaxWithNegativeLogLikelihood(Z,y)
|
||||||
|
return J
|
||||||
|
def train_one_iterate(self,input_x,y,eta):
|
||||||
|
#forward pass
|
||||||
|
J = self.caculate(input_x,y)
|
||||||
|
#backpropagation
|
||||||
|
J.backprop(np.ones(()))
|
||||||
|
for i,(w,b) in enumerate(self.param):
|
||||||
|
w = Variable(w.numpy() - (w.grad) * eta)
|
||||||
|
b = Variable(b.numpy() - (b.grad) * eta)
|
||||||
|
self.param[i] = (w,b)
|
||||||
|
self.iteration += 1
|
||||||
|
return J
|
||||||
|
|
||||||
|
def get_loss_and_confusion(self,input_x,y):
|
||||||
|
J = self.caculate(input_x,y)
|
||||||
|
s = J.softmax_numpy()
|
||||||
|
s = np.round(s)
|
||||||
|
confusion = (np.transpose(y)@s)
|
||||||
|
return J.numpy(), confusion
|
||||||
|
|
||||||
|
def set_checkpoint(self,dev_x,dev_y):
|
||||||
|
J = self.caculate(dev_x,dev_y)
|
||||||
|
loss = np.average(J.numpy())
|
||||||
|
print(f"check point #{len(self.checkpoints)}")
|
||||||
|
print(self.iteration,'iteration : avg loss : ',loss)
|
||||||
|
|
||||||
|
confusion = get_confusion(J)
|
||||||
|
accuracy = get_accuracy_from_confusion(confusion)
|
||||||
|
print('accuracy : {:.2f}%'.format(accuracy * 100))
|
||||||
|
self.checkpoints.append(CheckPoint(
|
||||||
|
self.param,
|
||||||
|
accuracy*100,
|
||||||
|
loss,
|
||||||
|
self.iteration
|
||||||
|
))
|
||||||
|
|
||||||
|
def get_confusion(J:SoftmaxWithNegativeLogLikelihood):
|
||||||
|
s = J.softmax_numpy()
|
||||||
|
s = np.eye(10)[np.argmax(s,axis=len(s.shape)-1)]
|
||||||
|
confusion = (np.transpose(J.y)@s)
|
||||||
|
return confusion
|
||||||
|
|
||||||
|
def get_accuracy_from_confusion(confusion):
|
||||||
|
return np.trace(confusion).sum() / np.sum(confusion)
|
||||||
|
|
||||||
|
def model_filename(layerDim:[int]):
|
||||||
|
return f"model{layerDim}.pickle"
|
||||||
|
|
||||||
|
def save_model(model:Model):
|
||||||
|
with open(model_filename(model.layerDim),"wb") as model_file:
|
||||||
|
pickle.dump(model,model_file)
|
||||||
|
|
||||||
|
def load_or_create_model(layerDim:list):
|
||||||
|
model_name = model_filename(layerDim)
|
||||||
|
if os.path.exists(model_name):
|
||||||
|
with open(model_name,"rb") as model_file:
|
||||||
|
return pickle.load(model_file)
|
||||||
|
else:
|
||||||
|
return Model(layerDim)
|
11
p4_simple_heatmap.py
Normal file
11
p4_simple_heatmap.py
Normal file
@ -0,0 +1,11 @@
|
|||||||
|
from p4_model import *
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
model = load_or_create_model([10])
|
||||||
|
|
||||||
|
heat = model.param[0][0].x.T
|
||||||
|
|
||||||
|
for i in range(0,10):
|
||||||
|
print(f'{i} index')
|
||||||
|
plt.imshow(heat[i].reshape(28,28),cmap='gray',interpolation='none')
|
||||||
|
plt.show()
|
54
p4_test.py
Normal file
54
p4_test.py
Normal file
@ -0,0 +1,54 @@
|
|||||||
|
from sklearn import datasets
|
||||||
|
import numpy as np
|
||||||
|
from layer import *
|
||||||
|
import os
|
||||||
|
import pickle
|
||||||
|
import matplotlib
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import random
|
||||||
|
import itertools
|
||||||
|
import math
|
||||||
|
import mnist_load
|
||||||
|
from p4_model import *
|
||||||
|
#matplotlib.use("TkAgg")
|
||||||
|
train_set, dev_set, test_set = mnist_load.load_mnistdata()
|
||||||
|
|
||||||
|
train_x,train_y = train_set
|
||||||
|
dev_x,dev_y = dev_set
|
||||||
|
test_x,test_y = test_set
|
||||||
|
|
||||||
|
gen:np.random.Generator = np.random.default_rng()
|
||||||
|
eta = 0.0001
|
||||||
|
|
||||||
|
MiniBatchN = 32
|
||||||
|
|
||||||
|
model = load_or_create_model([300,10])
|
||||||
|
|
||||||
|
end_n = math.floor(3500*17 /MiniBatchN)
|
||||||
|
|
||||||
|
J = model.caculate(dev_x,dev_y)
|
||||||
|
loss = np.average(J.numpy())
|
||||||
|
print(make_mermaid_graph(J))
|
||||||
|
print('testset : avg loss : ',loss)
|
||||||
|
|
||||||
|
confusion = get_confusion(J)
|
||||||
|
accuracy = get_accuracy_from_confusion(confusion)
|
||||||
|
print('accuracy : {:.2f}%'.format(accuracy * 100))
|
||||||
|
|
||||||
|
plt.subplot(1,2,1)
|
||||||
|
plt.title("accuracy")
|
||||||
|
plt.plot([*map(lambda x: x.iteration,model.checkpoints)],
|
||||||
|
[*map(lambda x: x.accuracy,model.checkpoints)]
|
||||||
|
)
|
||||||
|
plt.subplot(1,2,2)
|
||||||
|
plt.title("loss")
|
||||||
|
plt.plot([*map(lambda x: x.iteration,model.checkpoints)],
|
||||||
|
[*map(lambda x: x.loss,model.checkpoints)])
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
plt.title("confusion matrix")
|
||||||
|
plt.imshow(confusion,cmap='Blues')
|
||||||
|
plt.colorbar()
|
||||||
|
for i,j in itertools.product(range(confusion.shape[0]),range(confusion.shape[1])):
|
||||||
|
plt.text(j,i,"{:}".format(confusion[i,j]),horizontalalignment="center",color="white" if i == j else "black")
|
||||||
|
plt.show()
|
Loading…
Reference in New Issue
Block a user